منابع مشابه
Fractional Poisson Process
For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...
متن کاملFull characterization of the fractional Poisson process
The fractional Poisson process (FPP) is a counting process with independent and identically distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in several fields of applied and theoretical physics including models for anomalous diffusion. Contrary to the well-known Poisson process, the fractional Poisson process does not have stationary and indep...
متن کاملA generalization of the space-fractional Poisson process and its connection to some Lévy processes
The space-fractional Poisson process is a time-changed homogeneous Poisson process where the time change is an independent stable subordinator. In this paper, a further generalization is discussed that preserves the Lévy property. We introduce a generalized process by suitably time-changing a superposition of weighted space-fractional Poisson processes. This generalized process can be related t...
متن کاملThe Fractional Poisson Process and the Inverse Stable Subordinator
The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two mai...
متن کاملOn the Fractional Poisson Process and the Discretized Stable Subordinator
We consider the renewal counting number process N = N(t) as a forward march over the non-negative integers with independent identically distributed waiting times. We embed the values of the counting numbers N in a “pseudo-spatial” non-negative half-line x ≥ 0 and observe that for physical time likewise we have t ≥ 0. Thus we apply the Laplace transform with respect to both variables x and t. Ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2012
ISSN: 0167-7152
DOI: 10.1016/j.spl.2011.12.018